

C. U. SHAH UNIVERSITY, WADHWAN CITY.

Faculty of: Science

Course: Bachelor of Science (Chemistry)

Semester: I

Subject Code: PHE201-1C

Subject Name: Elements of Physics – I

	Categor	Subjec	ec Subject Name	Teaching hours/ Week				Evaluation Scheme/ Semester									
Sı				т			t	Credi t Points			Tutorial / Practical						
· No	y	t Code							Co			Semester	Int	ernal	End S	emester	
140				h	Tu	u Pr			Comprehensive Evaluation		Exams		Assessment		Exams		Total
									Ma	Marks	Mar	Duratio	Mark	Duratio	Mark	Duratio	
									rks		ks	n	S	n	S	n	
		PHE20	Elements of						10	Assignment							
3	MINOR	1-1C		3 -	2	5	4	10	Quiz	50	2	25	1	-	-	100	
		1-10	i flysics - i						05	Attendance							

AIM

- Aware students of the history of physics and its scope.
- Acquaint the basic concept of Physics as a subject.
- Basic concepts related to Classical Mechanics.
- Learn laboratory skills for handling instruments.

COURSE CONTENTS

Course Outline for Theory

UNIT	COURSE CONTENT	TEACHING HOURS
I	Vector Analysis Introduction to Scalar and Vector quantity, Vector algebra (Addition and subtraction), Scalar and vector products, Derivatives of a vector with respect to a parameter. gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke's theorem of vectors (statement only). Examples	15
II	Fundamentals of Dynamics Reference frames. Inertial frames; Galilean transformations; Galilean invariance. Review of Newton's Laws of Motion. Dynamics of a system of particles. Centre of Mass. Principle of conservation of momentum. Impulse. Momentum of variable-mass system: motion of rocket. Work and Energy Work and Kinetic Energy Theorem. Conservative and non conservative forces.	15

	Potential Energy. Energy diagram. Stable and unstable equilibrium. Elastic potential					
	energy. Force as gradient of potential energy. Work & Potential energy. Work done					
	by non-conservative forces. Law of conservation of Energy.					
	Elasticity					
	Hooke's law, Stress-strain diagram, Elastic moduli-relation between elastic constants,					
	Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants, Work					
	done in stretching and work done in twisting a wire, Twisting couple on a cylinder,					
	Determination of Rigidity modulus by static torsion, Torsional pendulum,					
***	Determination of Rigidity modulus and moment of inertia, q, η and σ by Searle's	4.5				
III	method.	15				
	Rotational Dynamics					
	Angular momentum of a particle and system of particles. Torque. Principle of					
	conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia.					
	Calculation of moment of inertia for rectangular, cylindrical and spherical bodies.					
	Kinetic energy of rotation. Motion involving both translation and rotation.					

Course Outline for Practical

Sr.	Course Contents							
No.								
1	Measurement of length (or diameter) using Vernier caliper, screw gauge							
	travelling microscope.							
2	To determine 'g' by bar pendulum.							
3	To determine the moment of inertia of a flywheel.							
4	To determine the elastic constants of a wire by Searl's method.							
5	To study the motion of a spring and calculate (a) spring constant (b) value of 'g							
6	To determine the height of a building using a sextant.							
7	Determine of 'g' by simple pendulum.							
8	To determine moment of inertia of disc and modulus of rigidity by torsic							
	pendulum.							
9	To determine the Young's Modulus of a Wire by Optical Lever Method.							
10	To determine the Modulus of Rigidity of a Wire by Maxwell's needle.							
	Total Hours = 30							

TEACHING METHODOLOGY

- Conventional method (classroom blackboard teaching)
- ICT Techniques
- Teaching through the classroom, laboratory work
- Variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)
- Teaching through laboratory work

LEARNING OUTCOME

After the successful completion of the course, students will be able to learn about vector analysis and laws of motion, conservation of energy and momentum, moment of inertia, elasticity, Young's modulus, bulk modulus, modulus of rigidity.

ARRANGEMENT OF LECTURE DURATION AND PRACTICAL SESSION AS PER DEFINED CREDIT NUMBERS

Units		Duration Hrs.)	Cre	ation of edits mbers)	Total Lecture Duration	Credit Calculation	
	Theory		Theory Practical		Theory+ Practical	•	
Unit – 1	15						
Unit – 2	15	30	3	1	45+30	4	
Unit – 3	15						
TOTAL	45	30	3	1	75	4	

EVALUATION

Theory Marks	Practical Marks	Total Marks		
75	25	100		

REFERENCE BOOKS

- 1. 'B. Sc. Practical Physics', C. L. Arora, S. Chand and Company Ltd.
- 2. 'Advanced Practical Physics', M. S. Chauhan and S. P. Sing, *Pragati Prakashan*.
- 3. 'Experimental Physics', University Granth Nirman Board, (Gujarati Medium).
- 4. 'Physics through experiments Vol. I & II', **B. Saraf et al.**, Vikas Publishing House.
- 5. 'Advanced Practical Physics', S. L. Gupta and V. Kumar, Pragati Prakashan.
- 6. 'An advanced course in practical Physics', **D. Chattopadhyay and P. C. Rakshit**, New Central Book Agency Pvt. Ltd.
- 7. 'Electronic Laboratory Primer', **Poorna Chandra and Sasikala**, S. Chand and Company Ltd.
- 8. 'Advanced Practical Physics for Students', B. L. Wosnop and H. T. Flint, Asia Publishing House.
- 9. 'Advanced Level Physics Practicals', **Michael Nelson and Jon M. Ogborn**, 4th Ed., *Heinemann Educational Publishers*.
- 10. 'Engineering Practical Physics', S. Panigrahi and B. Mallick, Cengage Learning India Pvt. Ltd.
- 11. 'A Text Book of Practical Physics', Indu Prakash and Ramakrishna, 11th Ed., Kitab Mahal.
- 12. 'A Laboratory Manual of Physics for Undergraduate Classes', **D. P. Khandelwal**, *Vani Publication*.
- 13. 'Basic Electronics: A Text Lab Manual, P. B. Zbar, A. P. Malvino and M. A. Miller, McGraw Hill.